Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255008

RESUMO

Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in the brain and muscle. Pathogenic variants in genes encoding VGSCs have been associated with severe disorders including epileptic encephalopathies and congenital myopathies. In this study, we identified pathogenic variants in genes encoding the α subunit of VGSCs in the fetuses of two unrelated families with the use of trio-based whole exome sequencing, as part of a larger cohort study. Sanger sequencing was performed for variant confirmation as well as parental phasing. The fetus of the first family carried a known de novo heterozygous missense variant in the SCN2A gene (NM_001040143.2:c.751G>A p.(Val251Ile)) and presented intrauterine growth retardation, hand clenching and ventriculomegaly. Neonatally, the proband also exhibited refractory epilepsy, spasms and MRI abnormalities. The fetus of the second family was a compound heterozygote for two parentally inherited novel missense variants in the SCN4A gene (NM_000334.4:c.4340T>C, p.(Phe1447Ser), NM_000334.4:c.3798G>C, p.(Glu1266Asp)) and presented a severe prenatal phenotype including talipes, fetal hypokinesia, hypoplastic lungs, polyhydramnios, ear abnormalities and others. Both probands died soon after birth. In a subsequent pregnancy of the latter family, the fetus was also a compound heterozygote for the same parentally inherited variants. This pregnancy was terminated due to multiple ultrasound abnormalities similar to the first pregnancy. Our results suggest a potentially crucial role of the VGSC gene family in fetal development and early lethality.


Assuntos
Anormalidades Múltiplas , Canalopatias , Feminino , Gravidez , Humanos , Estudos de Coortes , Vitaminas , Canais de Sódio , Feto/diagnóstico por imagem , Canal de Sódio Disparado por Voltagem NAV1.4
2.
Heliyon ; 9(12): e22987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125503

RESUMO

Chromosomal inversions are usually balanced structural chromosomal rearrangements that do not have an impact on the clinical phenotype of a carrier. The main clinical consequence of inversions is the risk for unbalanced gametes and offspring with severe phenotypes. Rarely though, inversions are associated with a phenotype, mainly due to submicroscopic Copy Number Variants (CNVs) or disruption at the breakpoints of a functionally important gene and/or genomic elements. In this study, a paracentric inversion of chromosome 16 [inv(16)(q22.3q24.1)] was identified in a three-generation family with discordant phenotypes with/without epilepsy and/or intellectual impairment, as well as with an unaffected carrier. This finding was confirmed by fluorescence in situ hybridization (FISH). Genetic investigation, initially with chromosomal microarray (CMA), did not reveal any copy number variants. Finally, Clinical Exome Sequencing (CES), detected the presence of a pathogenic nonsense variant (rs797044912) in the Chromodomain Helicase DNA-binding protein 2 (CHD2) gene [NM_001271.4:c.5035C>T p.(Arg1679Ter)]. CHD2 pathogenic variants have been associated with Developmental and Epileptic Encephalopathy-94 (DEE-94), a rare yet severe condition, characterized by developmental delay, seizures with an early onset, intellectual impairment, autism spectrum disorder, and sometimes behavioral issues. Family testing showed that the variant segregated with phenotypic heterogeneity in the affected individuals and appears to be causative. To the best of our knowledge, this is the first CHD2 pathogenic variant segregating in a three-generation family and the fourth familial case reported. These results further support our previous findings that familial, balanced rearrangements with discordant phenotypes in the same family are, in the vast majority, coincidental.

3.
Mol Genet Metab Rep ; 36: 100997, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37600231

RESUMO

Pompe disease is a rare metabolic myopathy caused by pathogenic variants affecting the activity of the lysosomal glycogen-degrading enzyme acid alpha-glucosidase (GAA). Impaired GAA function results in the accumulation of undegraded glycogen within lysosomes in multiple tissues but predominantly affects the skeletal, smooth and cardiac muscle. The degree of residual enzymatic activity appears to roughly correlate with the age of onset and the severity of the clinical symptoms. Here, we report four siblings in which the GAA variants NM_000152.5:c.2237G > C p.(Trp746Ser) and NM_000152.5:c.266G > A p.(Arg89His) were identified as an incidental finding of clinical exome sequencing. These variants are listed in the ClinVar and the Pompe disease GAA variant databases but are reported here for the first time in compound heterozygosity. All four siblings displayed normal urine tetrasaccharide levels and no clinical manifestations related to Pompe disease. Nevertheless, GAA enzymatic activity was within the range for late onset Pompe patients. Our report shows an association between a novel genotype and attenuated GAA enzymatic activity. The clinical significance can only be established by the regular monitoring of these individuals. The study highlights the major challenges for clinical care arising from incidental findings of next generation sequencing.

4.
Genes (Basel) ; 14(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36672823

RESUMO

Familial apparently balanced translocations (ABTs) are usually not associated with a phenotype; however, rarely, ABTs segregate with discordant phenotypes in family members carrying identical rearrangements. The current study was a follow-up investigation of four familial ABTs, where whole exome sequencing (WES) was implemented as a diagnostic tool to identify the underlying genetic aetiology of the patients' phenotypes. Data were analysed using an in-house bioinformatics pipeline alongside VarSome Clinical. WES findings were validated with Sanger sequencing, while the impact of splicing and missense variants was assessed by reverse-transcription PCR and in silico tools, respectively. Novel candidate variants were identified in three families. In family 1, it was shown that the de novo pathogenic STXBP1 variant (NM_003165.6:c.1110+2T>G) affected splicing and segregated with the patient's phenotype. In family 2, a likely pathogenic TUBA1A variant (NM_006009.4:c.875C>T, NP_006000.2:p.(Thr292Ile)) could explain the patient's symptoms. In family 3, an SCN1A variant of uncertain significance (NM_006920.6:c.5060A>G, NP_008851.3:p.(Glu1687Gly)) required additional evidence to sufficiently support causality. This first report of WES application in familial ABT carriers with discordant phenotypes supported our previous findings describing such rearrangements as coincidental. Thus, WES can be recommended as a complementary test to find the monogenic cause of aberrant phenotypes in familial ABT carriers.


Assuntos
Mutação de Sentido Incorreto , Translocação Genética , Humanos , Sequenciamento do Exoma , Linhagem , Fenótipo
5.
PLoS One ; 16(7): e0253562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324503

RESUMO

Multiple malformation syndromes (MMS) belong to a group of genetic disorders characterised by neurodevelopmental anomalies and congenital malformations. Here we explore for the first time the genetic aetiology of MMS using whole-exome sequencing (WES) in undiagnosed patients from the Greek-Cypriot population after prior extensive diagnostics workup including karyotype and array-CGH. A total of 100 individuals (37 affected), from 32 families were recruited and family-based WES was applied to detect causative single-nucleotide variants (SNVs) and indels. A genetic diagnosis was reported for 16 MMS patients (43.2%), with 10/17 (58.8%) of the findings being novel. All autosomal dominant findings occurred de novo. Functional studies were also performed to elucidate the molecular mechanism relevant to the abnormal phenotypes, in cases where the clinical significance of the findings was unclear. The 17 variants identified in our cohort were located in 14 genes (PCNT, UBE3A, KAT6A, SPR, POMGNT1, PIEZO2, PXDN, KDM6A, PHIP, HECW2, TFAP2A, CNOT3, AGTPBP1 and GAMT). This study has highlighted the efficacy of WES through the high detection rate (43.2%) achieved for a challenging category of undiagnosed patients with MMS compared to other conventional diagnostic testing methods (10-20% for array-CGH and ~3% for G-banding karyotype analysis). As a result, family-based WES could potentially be considered as a first-tier cost effective diagnostic test for patients with MMS that facilitates better patient management, prognosis and offer accurate recurrence risks to the families.


Assuntos
Anormalidades Múltiplas , Sequenciamento do Exoma , Estudos de Coortes , Humanos , Cariotipagem
6.
J Hum Genet ; 65(9): 783-795, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32398760

RESUMO

Pericentric inversions are among the known polymorphisms detected in the general population at a frequency of 1-2%. Despite their generally benign nature, pericentric inversions affect the reproductive potential of carriers by increasing the risk for unbalanced live-born offspring, miscarriages, or other fertility problems. Here we present a novel large pericentric inversion of chromosome 9, inv(9)(p23q22.3), detected in 30 heterozygote carriers, 24 from seven apparently unrelated families and 6 isolated patients, where the probands were mainly referred for fertility and prenatal problems. The inversion carries a significant risk for recombinant abnormal chromosomes, as in two families one supernumerary rec(9)dup(9p) and one rec(9)dup(9q) were identified, leading to neonatal death and miscarriage, respectively. The inversion carriers were identified by three different laboratories in Greece, Cyprus and Germany respectively, however all carriers have Southeast European origin. The inversion appears to be more frequent in the Greek population, as the majority of the carriers were identified in Greece. We were able to determine that the inversion is identical in all individuals included in the study by applying a combination of several methodologies, such as karyotype, fluorescence in situ hybridization (FISH), chromosomal microarrays (CMA) and haplotype analysis. In addition, haplotype analysis supports that the present inversion is identical by descent (IBD) inherited from a single common ancestor. Our results are, therefore, highly indicative of a founder effect of this inversion, presumably reflecting an event that was present in a small number of individuals that migrated to the current Southeast Europe/Northern Greece from a larger population.


Assuntos
Aborto Espontâneo/genética , Cromossomos Humanos Par 9/genética , Fertilidade/genética , Oligospermia/genética , Morte Perinatal/etiologia , Aborto Espontâneo/epidemiologia , Adulto , Criança , Inversão Cromossômica , Chipre , Feminino , Alemanha , Grécia , Heterozigoto , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Cariotipagem , Masculino , Análise em Microsséries , Oligospermia/epidemiologia , Gravidez
7.
Clin Case Rep ; 7(2): 366-370, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847208

RESUMO

We describe a female with Rett syndrome carrying a rare de novo mosaic nonsense mutation on MECP2 gene, with random X-chromosome inactivation. Rett syndrome severity in females depends on mosaicism level and tissue specificity, X-chromosome inactivation, epigenetics and environment. Rett syndrome should be considered in both males and females.

8.
PLoS One ; 13(10): e0205298, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289920

RESUMO

The majority of apparently balanced translocation (ABT) carriers are phenotypically normal. However, several mechanisms were proposed to underlie phenotypes in affected ABT cases. In the current study, whole-genome mate-pair sequencing (WG-MPS) followed by Sanger sequencing was applied to further characterize de novo ABTs in three affected individuals. WG-MPS precisely mapped all ABT breakpoints and revealed three possible underlying molecular mechanisms. Firstly, in a t(X;1) carrier with hearing loss, a highly skewed X-inactivation pattern was observed and the der(X) breakpoint mapped ~87kb upstream an X-linked deafness gene namely POU3F4, thus suggesting an underlying long-range position effect mechanism. Secondly, cryptic complexity and a chromothripsis rearrangement was identified in a t(6;7;8;12) carrier with intellectual disability. Two translocations and a heterozygous deletion disrupted SOX5; a dominant nervous system development gene previously reported in similar patients. Finally, a direct gene disruption mechanism was proposed in a t(4;9) carrier with dysmorphic facial features and speech delay. In this case, the der(9) breakpoint directly disrupted NFIB, a gene involved in lung maturation and development of the pons with important functions in main speech processes. To conclude, in contrast to familial ABT cases with identical rearrangements and discordant phenotypes, where translocations are considered coincidental, translocations seem to be associated with phenotype presentation in affected de novo ABT cases. In addition, this study highlights the importance of investigating both coding and non-coding regions to decipher the underlying pathogenic mechanisms in these patients, and supports the potential introduction of low coverage WG-MPS in the clinical investigation of de novo ABTs.


Assuntos
Facies , Perda Auditiva/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Translocação Genética , Sequência de Bases , Pontos de Quebra do Cromossomo , Feminino , Expressão Gênica , Perda Auditiva/diagnóstico , Perda Auditiva/fisiopatologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Cariótipo , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Fatores do Domínio POU/deficiência , Fatores do Domínio POU/genética , Fenótipo , Fatores de Transcrição SOXD/deficiência , Fatores de Transcrição SOXD/genética , Sequenciamento Completo do Genoma
9.
Mol Cytogenet ; 11: 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930709

RESUMO

BACKGROUND: Precise characterization of apparently balanced complex chromosomal rearrangements in non-affected individuals is crucial as they may result in reproductive failure, recurrent miscarriages or affected offspring. CASE PRESENTATION: We present a family, where the non-affected father and daughter were found, using FISH and karyotyping, to be carriers of a three-way complex chromosomal rearrangement [t(6;7;10)(q16.2;q34;q26.1), de novo in the father]. The family suffered from two stillbirths, one miscarriage, and has a son with severe intellectual disability. In the present study, the family was revisited using whole-genome mate-pair sequencing. Interestingly, whole-genome mate-pair sequencing revealed a cryptic breakpoint on derivative (der) chromosome 6 rendering the rearrangement even more complex. FISH using a chromosome (chr) 6 custom-designed probe and a chr10 control probe confirmed that the interstitial chr6 segment, created by the two chr6 breakpoints, was translocated onto der(10). Breakpoints were successfully validated with Sanger sequencing, and small imbalances as well as microhomology were identified. Finally, the complex chromosomal rearrangement breakpoints disrupted the SIM1, GRIK2, CNTNAP2, and PTPRE genes without causing any phenotype development. CONCLUSIONS: In contrast to the majority of maternally transmitted complex chromosomal rearrangement cases, our study investigated a rare case where a complex chromosomal rearrangement, which most probably resulted from a Type IV hexavalent during the pachytene stage of meiosis I, was stably transmitted from a fertile father to his non-affected daughter. Whole-genome mate-pair sequencing proved highly successful in identifying cryptic complexity, which consequently provided further insight into the meiotic segregation of chromosomes and the increased reproductive risk in individuals carrying the specific complex chromosomal rearrangement. We propose that such complex rearrangements should be characterized in detail using a combination of conventional cytogenetic and NGS-based approaches to aid in better prenatal preimplantation genetic diagnosis and counseling in couples with reproductive problems.

10.
PLoS One ; 12(1): e0169935, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28072833

RESUMO

Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged as an efficacious methodology for precise detection of translocation breakpoints. However, studies so far have mainly focused on de novo translocations. The present study focuses specifically on familial cases in order to shed some light to this diagnostic dilemma. Whole-genome mate-pair sequencing (WG-MPS) was applied to map the breakpoints in nine two-way ABT carriers from four families. Translocation breakpoints and patient-specific structural variants were validated by Sanger sequencing and quantitative Real Time PCR, respectively. Identical sequencing patterns and breakpoints were identified in affected and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any pathogenic mutations or unique variants in the affected individuals that could explain the phenotypic differences between carriers of the same translocations. In conclusion, we suggest that NGS-based methods, such as WG-MPS, can be successfully used for detailed mapping of translocation breakpoints, which can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been excluded. Future whole-exome or whole-genome sequencing will potentially reveal unidentified mutations in the patients underlying the discordant phenotypes within each family. In addition, larger studies are needed to determine the exact percentage for phenotypic risk in families with ABTs.


Assuntos
Pontos de Quebra do Cromossomo , Transtornos Cromossômicos/genética , Mapeamento Cromossômico/métodos , Fenótipo , Translocação Genética/genética , Adolescente , Adulto , Proteínas de Ligação ao Cálcio/genética , Pré-Escolar , Transtornos Cromossômicos/diagnóstico , Feminino , Genoma Humano , Humanos , Masculino , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Fatores Acopladores da Fosforilação Oxidativa/genética , Linhagem , Análise de Sequência de DNA/métodos , Proteínas de Transporte Vesicular/genética
11.
Database (Oxford) ; 2012: bas019, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22508994

RESUMO

The PRINTS database, now in its 21st year, houses a collection of diagnostic protein family 'fingerprints'. Fingerprints are groups of conserved motifs, evident in multiple sequence alignments, whose unique inter-relationships provide distinctive signatures for particular protein families and structural/functional domains. As such, they may be used to assign uncharacterized sequences to known families, and hence to infer tentative functional, structural and/or evolutionary relationships. The February 2012 release (version 42.0) includes 2156 fingerprints, encoding 12 444 individual motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. Here, we report the current status of the database, and introduce a number of recent developments that help both to render a variety of our annotation and analysis tools easier to use and to make them more widely available. Database URL: www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/química , Proteínas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Humanos , Alinhamento de Sequência , Interface Usuário-Computador
12.
Bioinformatics ; 28(4): 591-2, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22199385

RESUMO

UNLABELLED: We present LaTcOm, a new web tool, which offers several alternative methods for 'rare codon cluster' (RCC) identification from a single and simple graphical user interface. In the current version, three RCC detection schemes are implemented: the recently described %MinMax algorithm and a simplified sliding window approach, along with a novel modification of a linear-time algorithm for the detection of maximally scoring subsequences tailored to the RCC detection problem. Among a number of user tunable parameters, several codon-based scales relevant for RCC detection are available, including tRNA abundance values from Escherichia coli and several codon usage tables from a selection of genomes. Furthermore, useful scale transformations may be performed upon user request (e.g. linear, sigmoid). Users may choose to visualize RCC positions within the submitted sequences either with graphical representations or in textual form for further processing. AVAILABILITY: LaTcOm is freely available online at the URL http://troodos.biol.ucy.ac.cy/latcom.html.


Assuntos
Códon , Software , Algoritmos , Análise por Conglomerados , Escherichia coli/genética , Internet , RNA de Transferência/metabolismo
13.
Mol Biol Evol ; 26(7): 1631-40, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19369596

RESUMO

Notch is a highly conserved family of transmembrane receptors and transcription factors that are key players in several developmental processes. In this study, we identified novel Notch sequences from various species covering from worm to human and conducted a comprehensive phylogenetic analysis in order to confirm and extend the evolutionary history of Notch. Our findings confirm an independent duplication event in Caenorhabditis elegans resulting in two Notch genes and show that the vertebrate Notch genes resulted from two duplication events, both of which occurred before the divergence of teleosts and tetrapoda. Furthermore, we demonstrate that the vertebrate Notch2 group is phylogenetically closer to Notch3 and that Notch2 appeared at the first round of vertebrate duplication events. Moreover, there is evidence that the two Notch1 genes in fish, appeared by a recent duplication of Notch1 in teleost after the divergence of teleost and tetrapoda. Whether this is from ancient whole genome duplication (WGD) or gene duplication remains to be elucidated. The fourth group of Notch (Notch4) was found only in mammals. We suggest two possible scenarios for the origin of the Notch4 subfamily: 1) Notch4 appeared at the time of the two WGDs in the early chordate but has been maintained only in the mammalian lineage and was lost in the other lineages, 2) a recent independent duplication event took place in the mammalian lineage. The increase of the sequencing data from Xenopus tropicalis, Gallus gallus genome projects and of other avian and reptile genomes will shed more light on this event. Nevertheless, the great divergence of Notch4, from the other three Notch genes, suggests a rapid divergence raising questions about the functional implication of this event. In addition, comparison of the organization of Notch syntenic genes among species supports the coordinated rearrangements during evolution for Ntch, PBX, and BRD families that may lead to possible functional relationships.


Assuntos
Evolução Molecular , Receptores Notch/genética , Animais , Humanos , Filogenia , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...